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ABSTRACT. Protein misfolding and aggregation underpin several fatal neurodegenerative diseases,
including Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal
dementia (FTD). There are no treatments that directly antagonize the protein-misfolding events that
cause these disorders. Agents that reverse protein misfolding and restore proteins to native form and
function could simultaneously eliminate any deleterious loss-of-function or toxic gain-of-function
caused by misfolded conformers. Moreover, a disruptive technology of this nature would eliminate
self-templating conformers that spread pathology and catalyze formation of toxic, soluble oligomers.
Here, we highlight our efforts to engineer Hsp104, a protein disaggregase from yeast, to more
effectively disaggregate misfolded proteins connected with PD, ALS, and FTD. Remarkably subtle
modifications of Hsp104 primary sequence yielded large gains in protective activity against
deleterious a-synuclein, TDP-43, FUS, and TAF15 misfolding. Unusually, in many cases loss of
amino acid identity at select positions in Hsp104 rather than specific mutation conferred a robust
therapeutic gain-of-function. Nevertheless, the misfolding and toxicity of EWSR1, an RNA-binding
protein with a prion-like domain linked to ALS and FTD, could not be buffered by potentiated
Hsp104 variants, indicating that further amelioration of disaggregase activity or sharpening of
substrate specificity is warranted. We suggest that neuroprotection is achievable for diverse
neurodegenerative conditions via surprisingly subtle structural modifications of existing chaperones.
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INTRODUCTION

As population demographics shift toward
older age groups, several fatal and presently
incurable neurodegenerative diseases, including:
Alzheimer’s disease (AD), Parkinson’s disease
(PD), amyotrophic lateral sclerosis (ALS), and
frontotemporal dementia (FTD) will inevitably
increase in prevalence.1–5 These diseases
threaten public health worldwide and present a
formidable barrier to living longer, more fulfill-
ing lives. Game-changing therapeutic solutions
that attack the cause of these diseases and not
merely the symptoms are urgently needed.
Indeed, while ‘wars’ on cancer and heart disease
have yielded myriad promising drugs, the same
cannot be said for the neurodegenerative dis-
eases where, aside from one notable exception
for the treatment of familial amyloid neuropa-
thy,6–11 the drug pipelines are practically empty.
Although each neurodegenerative disease is fun-
damentally different – some debilitating move-
ment but preserving memory, others destroying
memory but sparing movement – a recurring and
unifying facet is the accumulation of misfolded
protein structures in the brain.1–5,12–14 These
misfolded structures can even become self-tem-
plating and propagate disease from single or
multiple sites of origination.2,12–16

Many of the misfolded proteins found in
pathological inclusions, e.g. a¡synuclein
(a-syn) or TDP-43, are expressed in almost all
cells, yet only seem to misfold and confer tox-
icity in specific neurons.1–5,17 Thus, motor neu-
rons are primarily afflicted in ALS,3 whereas
dopaminergic neurons are selectively devas-
tated in PD.4,17 In all of these diseases, the pro-
teostasis network collapses and fails to counter
specific protein-misfolding events,18–20 which
ultimately overwhelm the system and can even
transmit disease.2,12–16 A key therapeutic
advance will come with ability to rescue selec-
tively vulnerable neurons with agents that
directly antagonize or reverse the deleterious
protein-misfolding events that underpin neuro-
degeneration.21,22 Indeed, agents that reverse
protein misfolding and restore proteins to
native form and function could simultaneously
eliminate any deleterious loss-of-function or

toxic gain-of-function caused by misfolded
conformers.21,22 Moreover, a disruptive tech-
nology of this nature would eliminate self-tem-
plating conformers that spread pathology2,12–16

and catalyze formation of soluble toxic oligom-
ers23 via secondary nucleation.12,24 In other
contexts, the accumulation of misfolded pro-
teins trapped in inclusions can incur fitness
costs and likely also contributes to cancer and
aging.25–30 Hence, agents capable of reactivat-
ing misfolded and aggregated proteins could
have therapeutic utility beyond neurodegenera-
tive disease.

The very same type of misfolded conformers
(e.g., prions or amyloids) that underpin incur-
able neurodegenerative diseases have, surpris-
ingly, been appropriated during evolution for
adaptive purposes elsewhere.31-46 For example,
the same type of prion domain that enables
Sup35 and Mot3 to form beneficial prions in
yeast31,33,41 causes TDP-43 and FUS to misfold
in ALS,2,47-51 and hnRNPA1 and hnRNPA2 to
misfold in multisystem proteinopathy.52,53

Indeed, yeast exploit prions for beneficial pur-
poses, including stress resistance and the evolu-
tion of new traits in fluctuating
environments.31–35,41,44,45,54 CPEB prions
might even encode our own long-term memo-
ries.41,55–60 An important mission is to establish
a deep and rigorous mechanistic understanding
of how nature has controlled protein misfolding
(sometimes even for adaptive purposes) so that
we can apply and if necessary re-engineer these
natural solutions to counter protein misfolding
in disease. Unlocking nature’s secrets to
mitigate protein misfolding could empower
unparalleled opportunities to eradicate neuro-
degenerative disease. In this review, we high-
light our efforts to engineer Hsp104, a protein
disaggregase from yeast, to more effectively
disaggregate misfolded proteins connected
with PD, ALS, and FTD.61–64

Applying Hsp104 and Engineered
Variants to Deleterious Protein Misfolding

Hsp104 is a hexameric AAAC ATPase and
protein disaggregase from yeast.65,66 Hsp104
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forms a ring-shaped complex that disaggregates
protein by coupling ATP hydrolysis to partial
or complete substrate translocation across its
central channel.21,67–72 Optimal Hsp104 activ-
ity is typically achieved in conjunction with the
Hsp110, Hsp70, and Hsp40 chaperone sys-
tem.65,73–76 Importantly, Hsp104 is the only
cellular agent known to rapidly dissolve stable
amyloid fibrils,73,77,88 which can self-template
their own cross-b conformation and encode
transmissible phenotypes.12,15,41 Hsp104 activ-
ity has enabled yeast to stably propagate prions
and even exploit them for beneficial pur-
poses.32,33,41,54,89,90 Hsp104 also eradicates
toxic soluble oligomers that adopt a generic
conformation23 formed by diverse proteins.78–80

Thus, amyloid fibrils and toxic oligomers are
not intractable and can be eliminated rapidly by
Hsp104.61,73,77–84,87,91

Inexplicably, Hsp104 has no metazoan
ortholog despite being highly conserved in bac-
teria, plants, fungi, chromista, and proto-
zoa.39,40,52 The reason for the loss of Hsp104
from metazoan lineages is uncertain, especially
as Hsp104 can be expressed safely and broadly
in worm, fly, mouse, and rat.61,78,92–95 How-
ever, it has been suggested that the possession
of Hsp104’s potent disaggregase modality
might have incurred a detrimental fitness cost
at the divergence of metazoa from proto-
zoa.96,97 We have hypothesized that Hsp104
could be applied as a disruptive technology to
combat protein-misfolding disorders.21,22,98

Can we add back the powerful disaggregase
activity that animals have lost very early in
their evolution to impart therapeutic benefit in
situations where protein misfolding has caused
disease? Applying powerful biochemical activ-
ities isolated from the microbial world to solve
problems posed by human disease has strong
precedent. For example, botulinum neurotoxin
variants can achieve therapeutic benefit across
a large range of clinical conditions including
various movement, urologic, and secretory dis-
orders,99–101 due to their highly potent and
selective ability to cleave SNARE proteins and
prevent secretion.102,103

Importantly, Hsp104 returns aggregated pro-
teins to native structure and function,65,66,85

and could simultaneously reverse toxic gain-of-

function and loss-of-function phenotypes
linked to protein misfolding, as well as elimi-
nate self-templating conformers that spread dis-
ease.13,21,22,98 We have established that Hsp104
disassembles toxic a-syn oligomers and amy-
loid,78,84,98 and rescues a-syn-induced dopami-
nergic neurodegeneration in the mammalian
substantia nigra.78 Hsp104 suppresses polyglut-
amine toxicity in Drosophila even when
expressed after the onset of polyglutamine-
induced degeneration, whereas Hsp70 is inef-
fective.92 Thus, Hsp104 is the first disaggregase
or chaperone treatment administered after the
onset of pathogenic protein-induced degenera-
tion that mitigates disease progression.92 More-
over, Hsp104 can disassemble amyloid and
soluble toxic oligomeric forms of diverse wild-
type (WT) and mutant proteins connected to
AD, PD, Huntington’s Disease (HD) or type II
diabetes, including: Ab42, tau, a-syn, polyglut-
amine, and amylin.84,104

For some substrates, however, Hsp104 is
not as active as it is against natural yeast
prions, such as those formed by
Sup35.79,80,84,101 Indeed, even some Sup35
prion strains are more resistant to elimination
by Hsp104, and this differential sensitivity can
drive ‘protein only’ evolution.91 Thus, a key
goal is to potentiate Hsp104 activity against
specific disease-associated substrates via engi-
neering and evolution.21,22,61,62,98 However,
chaperones are difficult targets for protein
engineering due to their large size, and protein
disaggregases such as Hsp104 have poorly
understood structures,67,82,83,105–108 making
rational design challenging. Hence, we empl-
oyed an unbiased approach to isolate
improved Hsp104 variants by screening
large libraries of Hsp104 variants to isolate
those that rescue yeast models that recapitu-
late salient features of various neurodegenera-
tive proteinopathies, including protein
mislocalization, aggregation, and toxicity.61,64

We focused on yeast models of neurode-
generative proteinopathies caused by aberrant
TDP-43 and FUS misfolding, e.g. ALS and
FTD,3,109,110 or a-syn misfolding, e.g., PD
and multiple system atrophy.4,17,111,112 In
these yeast models, the neurodegenerative
disease protein is overexpressed from the
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galactose-inducible promoter, which induces
protein mislocalization, aggregation, and
toxicity idiosyncratic to each specific neuro-
degenerative disease.47–49,113–118 Overexpres-
sion is a key tool to study the aggregation
and toxicity of human neurodegenerative dis-
ease proteins in yeast and enables protein
misfolding via increasing protein concentra-
tion and overwhelming proteostatic buf-
fers.117,118 Importantly, an established cause
of FTD or ALS is increased expression of
TDP-43119 or FUS120,121 respectively, and
elevated a-syn expression causes PD.122-125

These yeast models have proven to be an
extraordinary resource and have enabled the
identification of genetic and small-molecule
suppressors of TDP-43, FUS, and a-syn tox-
icity, which can also exhibit therapeutic effi-
cacy against degeneration in the metazoan
nervous system, human cells and neurons,
and even patient-derived neu-
rons.49,114,116,126–138 In the case of TDP-43,
the yeast model even enabled identification
of a common genetic risk factor for ALS:
intermediate polyglutamine expansions (27-
33 glutamines) in ataxin 2.128,139–145 Indeed,
several aggregation-prone human RNA-bind-
ing proteins with prion-like domains, includ-
ing TAF15, EWSR1, hnRNPA1, and
hnRNPA2 have been successfully predicted
as neurodegenerative disease genes based on
initial studies in yeast.50–53,146,147 Thus, the
power of yeast to elucidate protein-misfold-
ing events and methods to counter them rele-
vant to neurodegenerative disease should not
be doubted.130,137,139

Importantly, for our purposes, the toxicity
of TDP-43, FUS, and a-syn in yeast is main-
tained in Dhsp104 backgrounds,61 indicating
that, unlike polyglutamine toxicity in
yeast,148–150 TDP-43, FUS, and a-syn toxic-
ity does not depend on Hsp104 or Hsp104-
dependent prions. Moreover, in the Dhsp104
background, overexpression of wild-type
(WT) Hsp104 did not rescue TDP-43, FUS,
or a-syn toxicity.61–64 Thus, we could
explore Hsp104 sequence space in the
absence of WT Hsp104 and be certain that
any Hsp104 variants that rescued TDP-43,

FUS, and a-syn toxicity were due to a novel
therapeutic gain of Hsp104 function.61–64

Potentiating Mutations Can be Uncovered
in the Middle Domain of Hsp104

Hsp104 is comprised of 5 domains: an N-ter-
minal domain, nucleotide-binding domain 1
(NBD1), a coiled-coil middle domain (MD),
NBD2, and a short acidic C-terminal
domain.67,81 We focused our libraries on the
coiled-coil MD, which is comprised of 4 a-heli-
ces and facilitates optimal ATPase activity,
communication between NBD1 and NBD2,
intrinsic disaggregase activity, and interactions
with Hsp70 during disordered aggregate disso-
lution.67,82,151–154 Importantly, the MD is less
conserved than the 2 NBDs, indicating that it
can withstand various missense mutations with-
out eliminating disaggregase functionality.67

Indeed, the MD can even tolerate large protein
insertions (e.g., insertion of lysozyme between
Asn467 and Glu468 in MD helix 2) or helix
replacements and yet still maintain Hsp104 dis-
aggregase activity.106,152,153 Moreover, previ-
ous studies suggested that Hsp104 MD variants
can have unexpected gain-of-function pheno-
types, including rescue of polyglutamine aggre-
gation and toxicity.106,150,155

Remarkably, we uncovered a large number
of MD variants that enabled Hsp104 to rescue
the aggregation and toxicity of TDP-43, FUS,
and a-syn in yeast.61 These mutations were
located throughout the MD in helix 1 (e.g.,
V426L), the distal loop between helix 1 and 2
(e.g., A437W), and helix 3 (e.g., A503S,
Y507C)61 (Figure 1A and Table 1). We also
uncovered potentiating mutations in the small
domain of NBD1 (e.g., N539K) immediately
adjacent to the C-terminal end of the MD61

(Figure 1A). Interestingly, we recently discov-
ered that the N-terminal domain of Hsp104
(residues 1-157) is essential for the potentiated
activity of Hsp104A503V and Hsp104A503S.156

Typically, these potentiated Hsp104 variants
reduced aggregation and toxicity of TDP-43,
FUS, and a-syn in yeast without reducing their
expression level or inducing a heat shock
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response.61 The expression of potentiated
Hsp104 variants was also similar or lower to
the expression of WT Hsp104, which failed to
rescue TDP-43, FUS, and a-syn aggregation or
toxicity.61,63 Moreover, neither the unfolded
protein response nor autophagy was required
for potentiated Hsp104 variants to rescue toxic-
ity.61 Remarkably, aggregates were now
cleared from the majority of cells, and the cor-
rect localization of the neurodegenerative dis-
ease protein could be restored.61,63 Thus,

potentiated Hsp104 variants resolved cyto-
plasmic TDP-43 aggregates and restored TDP-
43 to the nucleus61,63 (Figure 1B). A major
goal in ALS therapeutics is to achieve this phe-
notype in degenerating motor neurons.3 For
FUS, cytoplasmic aggregates were dissolved,
but FUS remained cytoplasmic and did not
return to the nucleus because the yeast nuclear-
import machinery fails to decode the FUS PY-
NLS49,114 (Figure 1C). Several suppressors of
FUS toxicity in yeast have been uncovered in

FIGURE 1. Potentiated Hsp104 variants suppress aggregation and mislocalization of disease pro-
teins in yeast proteinopathy models. (A) Homology model of the MD and a portion of the small
domain of NBD1 of Hsp104. Side chains of indicated residues are shown as sticks. (B) Fluores-
cence microscopy of yeast coexpressing fluorescently tagged TDP-43 and Hsp104WT,
Hsp104A503V, or vector. Cells are stained with DAPI to visualize nuclei (blue). TDP-43 only exhibits
nuclear localization upon coexpression of potentiated Hsp104A503V. (C) Fluorescence microscopy
of cells coexpressing FUS-GFP and Hsp104WT, Hsp104A503V, or vector. Yeast coexpressing potenti-
ated Hsp104A503V display fewer cytoplasmic FUS foci. (D) Fluorescence microscopy of cells coex-
pressing a-synuclein-YFP and Hsp104WT, Hsp104A503V, or vector. Yeast coexpressing potentiated
Hsp104A503V display fewer cytoplasmic a-syn foci, and a-syn only accumulates at the plasma mem-
brane upon coexpression of Hsp104A503V.
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TABLE 1. Summary of potentiating Hsp104 mutations. The mutations that potentiate Hsp104
activity, their location, and their properties are listed based on61,63,107

Potentiating Mutations Middle domain helix Properties

V426G 1 Suppresses toxicity of FUS

V426L 1 Suppresses toxicity of TDP-43, FUS, and a-syn; Does not

modify EWSR1 toxicity; Restores nuclear TDP-43 and

clears FUS and a-syn aggregates

A437W Loop between 1 and 2 Suppresses toxicity of TDP-43, FUS, and a-syn;

Enhances EWSR1 toxicity

D498V 3 Suppresses toxicity of FUS and a-syn; Does not modify

TDP-43 toxicity; ATPase similar to WT Hsp104; Does

not require Hsp70 and Hsp40 for disaggregase

activity; Hsp70 and Hsp40 do not stimulate

disaggregase activity

A503X* 3 Suppress toxicity of TDP-43, FUS, and a-syn

A503V 3 Suppresses toxicity of TDP-43, FUS, and a-syn;

Enhances EWSR1 toxicity; Elevated ATPase,

disaggregase, translocase, and unfoldase activity;

Does not require Hsp70 and Hsp40 for disaggregase

activity; Restores nuclear TDP-43 and clears FUS and

a-syn aggregates

A503S 3 Suppresses toxicity of TDP-43, FUS, TAF15, and a-syn;

Enhances EWSR1 toxicity; Elevated ATPase,

disaggregase, and unfoldase activity; Does not require

Hsp70 and Hsp40 for disaggregase activity;

Suppresses neurodegeneration in C. elegans PD

model

A503V-DPLF 3 (Plus pore loop Y257F in NBD1

and Y662F in NBD2)

Suppresses toxicity of TDP-43, FUS, and a-syn;

Enhances EWSR1 toxicity; Elevated ATPase,

disaggregase, and unfoldase activity; Does not require

Hsp70 and Hsp40 for disaggregase activity;

Suppresses neurodegeneration in C. elegans PD

model

D504V 3 Suppresses toxicity of TDP-43, FUS, and a-syn

D504C 3 Suppresses toxicity of FUS, and a-syn; Does not modify

TDP-43 toxicity; ATPase activity similar to WT

Hsp104; Elevated disaggregase and unfoldase

activity; Does not require Hsp70 and Hsp40 for

disaggregase activity; Hsp70 and Hsp40 do not

stimulate disaggregase activity

Y507A Suppresses toxicity of TDP-43, FUS, and a-syn; Does not

require Hsp70 and Hsp40 for disaggregase activity

Y507D Suppresses toxicity of TDP-43, FUS, and a-syn

Y507V 3 Suppresses toxicity of FUS, and a-syn; Does not modify

TDP-43 toxicity; Elevated ATPase and disaggregase

activity; Does not require Hsp70 and Hsp40 for

disaggregase activity

Y507C 3 Suppresses toxicity of TDP-43, FUS, and a-syn;

Enhances EWSR1 toxicity; Elevated ATPase,

disaggregase, and unfoldase activity; Does not require

Hsp70 and Hsp40 for disaggregase activity

N539L/E/D/G Small domain NBD1 Suppresses toxicity of FUS

N539K Small domain NBD1 Suppresses toxicity of TDP-43, FUS, and a-syn; Does not

modify EWSR1 toxicity

*X D any amino acid except A or P.
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genome-wide screens,49,114 but none of these
cleared FUS aggregates, indicating a novel
mode of rescue by potentiated Hsp104 var-
iants.61,63 Potentiated Hsp104 variants cleared
cytoplasmic a-syn inclusions and restored
plasma membrane localization of a-syn61,63

(Figure 1D). Achieving these phenotypes in
patients would provide a game-changing solu-
tion for PD. Importantly, 2 potentiated Hsp104
variants, Hsp104A503S and Hsp104DPLF-A503V

(where substrate-engaging pore-loop tyrosines,
Y257 and Y662 are mutated to F), rescued
a-syn-induced dopaminergic neurodegenera-
tion in a C. elegans model of PD.61 Thus,
potentiated Hsp104 variants confer neuropro-
tective phenotypes in the context of the meta-
zoan nervous system. Next, it will be important
to assess the efficacy of potentiated Hsp104
variants in mammalian models of PD78 as well
as TDP-43- and FUS-related ALS.157,158 None-
theless, we have established the first ever exam-
ple of engineered disaggregases rescuing
neurodegeneration in the metazoan nervous
system. Thus, general neuroprotection via acti-
vated protein disaggregases may be achievable
for a range of neurodegenerative diseases.

Several missense mutations in TDP-43 or
FUS cause ALS,3,159,160 whereas specific a-syn
mutations cause PD.17,161,162 Many of these
variants cause aggressive, early-onset forms of
disease.3,17,159-162 Enhanced proteotoxicity
often stems from an increased intrinsic propen-
sity of the mutant protein to misfold in isola-
tion,48,163 e.g., as with TDP-43M337V and
a-synA53T, or to mislocalize in vivo, e.g. as
with FUSP525L and FUSR521C.3,157,164–166 A
subset of the potentiated Hsp104 variants,
Hsp104A503V, Hsp104A503S, Hsp104A503G,
Hsp104V426L, Hsp104A437W, Hsp104Y507C,
Hsp104N539K, and Hsp104DPLF-A503V, were
tested against yeast models expressing disease-
linked: TDP-43 (TDP-43A315T, TDP-43Q331K,
and TDP-43M337V 167,168); FUS (FUSP525L and
FUSR521C 3,157,164-166); and a-syn (a-synA53T

and a-synE46K 17,161,162). Remarkably, potenti-
ated Hsp104 variants suppressed toxicity and
aggregation of these disease-linked forms of
TDP-43, FUS, and a-syn.63

Initially, these Hsp104 variants appeared to
be potentiated against all neurodegenerative

disease substrates, but this was not the case.63

We also tested their activity against EWSR1,
another RNA-binding protein with a prion-like
domain implicated in ALS and FTD, which
aggregates and is toxic in yeast.3,50,146,147,169

None of the potentiated Hsp104 variants sup-
pressed EWSR1 aggregation or toxicity in yeast,
and instead enhanced toxicity except for
Hsp104V426L and Hsp104N539K, which had no
effect like WT Hsp104.63 This result was sur-
prising as EWSR1 is closely related to FUS in
terms of primary sequence and domain architec-
ture.170 Moreover, potentiated Hsp104 variants
could rescue TAF15 toxicity in yeast.63 TAF15
is also an RNA-binding protein with a prion-
like domain implicated in ALS and FTD that is
closely related to FUS and EWSR1.50,146,147We
could rationalize these findings as in vitro
Hsp104A503S but not WT Hsp104 could disag-
gregate preformed FUS and TAF15 fibrils, but
not EWSR1 fibrils.63 Thus, EWSR1 fibrils
appear to be refractory to potentiated Hsp104
variants in vitro and in vivo.63 Further engineer-
ing of Hsp104 appears to be necessary to antag-
onize EWSR1 aggregation and toxicity.

Potentiated Hsp104 Variants Typically
Have Elevated ATPase Activity

To assess the mechanism by which potentiat-
ing mutations enhance Hsp104 activity, we
explored their biochemical properties. Typi-
cally, potentiated Hsp104 variants exhibited
»2-4-fold elevated ATPase activity than
Hsp104, indicating that potentiation might
stem from an ability to undergo more rapid
rounds of ATP binding and hydrolysis.61 How-
ever, enhanced ATPase activity was not always
a feature of potentiated Hsp104 variants. For
example, Hsp104D498V and Hsp104D504C

exhibited ATPase activity similar to Hsp104.61

Interestingly, Hsp104D498V and Hsp104D504C

were more selective in their ability to rescue
the yeast neurodegenerative disease models.
They could both rescue FUS and a-syn toxicity
in yeast, but failed to rescue TDP-43 toxicity.61

These data suggest that elevated ATPase activ-
ity of potentiated Hsp104 variants is critical to
rescue toxicity of a broad spectrum of

96 Jackrel and Shorter

D
ow

nl
oa

de
d 

by
 [

69
.2

53
.2

54
.1

24
] 

at
 1

5:
46

 2
5 

M
ay

 2
01

5 



neurodegenerative disease proteins, and that
reducing ATPase activity in this context pro-
motes selectivity for specific substrates.

Potentiated Hsp104 Variants Do
Not Require Hsp70 and Hsp40
for Disaggregation

Rescue of toxicity by enhanced Hsp104 var-
iants could be a consequence of an altered mech-
anism of disaggregation compared to Hsp104.
Thus, we assessed disaggregase activity against
disordered luciferase aggregates in vitro.
Hsp104 failed to disaggregate luciferase unless
supplemented with Hsp70 or Hsp40. In striking
contrast, Hsp70 and Hsp40 were not required for
any of the potentiated Hsp104 variants to reacti-
vate aggregated luciferase.61 Typically, in the
absence of Hsp70 and Hsp40, potentiated
Hsp104 variants were »3-9-fold more active
than Hsp104 in the presence of Hsc70 (an
Hsp70) and Hdj2 (an Hsp40).61 Surprisingly,
these findings suggest that absolute dependence
on Hsp70 and Hsp40 hinders Hsp104 from res-
cuing a-syn, FUS, and TDP-43 toxicity.

This elevated disaggregase activity even in
the absence of Hsp70 differentiates potentiated
Hsp104 variants from hyperactive ClpB (the E.
coli homolog of Hsp104) variants bearing spe-
cific MD mutations. In contrast to potentiated
Hsp104 variants, hyperactive ClpB variants
still require the Hsp70 chaperone system for
robust disaggregase activity.171 This key differ-
ence likely reflects the more stringent require-
ment for Hsp70 for ClpB disaggregase activity
compared to Hsp104.107

In most cases, potentiated Hsp104 activity
could be stimulated even further by supplemen-
tation with the Hsp70 chaperone system.61

Thus, potentiated Hsp104 variants can still col-
laborate with the Hsp70 chaperone system, but
do not absolutely require it for the disaggre-
gation of disordered aggregates. Interestingly,
once again the 2 exceptions were Hsp104D498V

and Hsp104D504C. The luciferase disaggregase
activity of Hsp104D498V and Hsp104D504C was
not stimulated further by the Hsp70 chaperone
system.61 These data suggest that the ability of
potentiated Hsp104 variants to collaborate with

Hsp70 is critical to rescue toxicity of a broad
spectrum of neurodegenerative disease proteins,
and that reducing collaboration with Hsp70 pro-
motes selectivity for specific substrates.

Potentiated Hsp104 Variants Exhibit
Enhanced Translocase and Unfoldase
Activity

We also established that potentiated Hsp104
variants had enhanced activities against various
soluble model substrates. Thus, potentiated var-
iants translocated the intrinsically disordered solu-
ble substrate, FITC-casein, more rapidly across
their central channel.61 This accelerated substrate-
translocation rate likely enables potentiated
Hsp104 variants to avoid kinetic traps during
translocation and exert additional force to unfold
stable substrates. Indeed, potentiated Hsp104 var-
iants were also enhanced unfoldases, and
unfolded GFP bearing a long (RepA1-70) or short
(6-HIS-TEV) unfolded tag more rapidly than
Hsp104 in the presence of ATP.61,63 In fact,
Hsp104 did not unfold these substrates at all in the
presence of ATP, but instead required a mixture
of ATP and ATPgS.61,63 Even then, Hsp104
unfolded these substrates less effectively and at a
slower rate than the potentiated Hsp104 var-
iants.61,63 Importantly, neither Hsp104 nor the
potentiated Hsp104 variants unfolded untagged
GFP, and thus the potentiated variants do not
unfold any protein.61,63 Collectively, these data
suggest that potentiated Hsp104 variants are
enhanced unfoldases that are intrinsically primed
to recognize and rapidly unfold substrates bearing
even short unfolded tags and unlike Hsp104 do
not have to wait for regulatory events to initiate
unfolding (simulated here by ATP:ATPgS
mixtures).

Potentiated Hsp104 Variants Exhibit
Altered Subunit Collaboration

Using a mutant doping strategy,104 we also
revealed that a potentiated Hsp104 variant,
Hsp104A503V, promoted protein disaggregation
by employing a different mechanism of intersu-
bunit collaboration compared to Hsp104.
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Indeed, the Hsp104A503V hexamer possessed
greater plasticity and maintained robust disag-
gregase activity in the presence of a wider vari-
ety of subunit-inactivating events. For
example, an Hsp104A503V subunit that binds
but cannot hydrolyze ATP and engages sub-
strate will stimulate the disaggregase activity
of an adjacent Hsp104A503V subunit within the
hexamer. By contrast, in Hsp104, a single sub-
unit with these properties inactivates the entire
hexamer.104 This increased resistance of
Hsp104A503V hexamers to subunit-inactivating
events likely empowers facile resolution of
recalcitrant substrates. Importantly, this altered
activity enabled potentiated Hsp104 variants to
disaggregate diverse neurodegenerative disease
substrates in vitro, including a-syn, FUS, TDP-
43, and TAF15 fibrils, under conditions where
Hsp104 was inactive.61,63

Degeneracy of Potentiating Mutations
at Specific MD Positions

Our findings establish that the Hsp104 MD
plays a critical role in regulating Hsp104 func-
tion.61,63 Remarkably, missense mutations to
diverse residues at specific and disparate posi-
tions within the MD (e.g., A503, Y507, N539)
conferred a therapeutic gain of function.61

Indeed, A503 could be mutated to any residue
except proline to yield potentiated Hsp104 var-
iants capable of rescuing TDP-43, FUS, and
a-syn toxicity in yeast.61 Thus, potentiated dis-
aggregase activity is enabled by loss of amino
acid identity at specific positions in the MD
rather than by mutation to a specific residue or
class of residue. This finding indicates that
Hsp104 disaggregase activity is usually tightly
constrained, but can be unleashed by even very
subtle changes to side chains at specific posi-
tions. The ability to attain such a wide-reaching
set of gain of therapeutic functions via such
minor changes in primary sequence, e.g. by
adding a single methylene bridge (V426L) or
by removing a single methyl group (A503G) is
without precedent. It also suggests that drug-
like small molecules that bind to the correct
region of the MD might also enhance Hsp104

activity.154 Moreover, post-translational modi-
fication of Hsp104 in specific regions of the
MD could act as a switch to elicit potentiated
activity in a reversible manner. Our findings
suggest that the regulatory constraints placed
on Hsp104 are simply too tight to counter
TDP-43, FUS, and a-syn misfolding and toxic-
ity under certain conditions. Thus, we discover
an unanticipated and inimical limitation in
existing disaggregase functionality. The MD
can be viewed as a capacitor braced to unleash
Hsp104 activity. Potentiating mutations likely
destabilize autoinhibitory interactions that
dampen Hsp104 activity or induce structural
rearrangements that mimic or enable allosteric
activation perhaps akin to the effect of Hsp70
binding the Hsp104 MD.154 It remains unclear
how diverse conservative and nonconservative
mutations can result in this phenotype. Muta-
tion of specific residues might subtly perturb
hexamer structure, possibly promoting
enhanced flexibility, altered channel properties,
and stable population of the potentiated state.

Why Is WT Hsp104 Not Naturally
Potentiated?

Why isWTHsp104 not naturally potentiated?
It would seem beneficial to be able to counter the
excessive aggregation and toxicity caused by the
overexpression of a single protein in yeast.61,63

However, WT Hsp104 is unable to confer this
activity.61,63 Thus, it seems probable that the
stress caused by the overexpression of a single,
aggregation-prone, toxic protein is an unusual
challenge for yeast that has not featured as a sig-
nificant selective pressure sculpting Hsp104 pri-
mary sequence and activity. Rather, Hsp104
activity has likely been tuned during evolution
to refold diverse aggregated proteins that accrue
after a range of mild to severe environmental
stresses.65,66,172,173 Moreover, Hsp104 activity
is also likely adapted to propagate various bene-
ficial yeast prions.31,33,34,41,46,90

With regard to these 2 important activities,
the potentiated Hsp104 variants uncovered in
our screen display deficits. Thus, even though
Hsp104A503V can confer thermotolerance to
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high temperatures (e.g., 50�C) just as well or
even better than Hsp104,61,155 Hsp104A503V is
toxic to yeast when overexpressed under condi-
tions of very mild thermal stress (e.g.
37�C).61,155 Moreover, Hsp104A503V overex-
pression is benign under non-stressful condi-
tions.61,155 We suggest that under mild stress
conditions, many yeast proteins populate
mildly destabilized or metastable states that are
inappropriately recognized and unfolded by
potentiated Hsp104A503V, which causes toxic-
ity.63 By contrast, WT Hsp104 is likely tuned
to ignore such substrates.63 Hsp104A503V also
displays defects in propagation of the beneficial
[PSIC] prion.174 Indeed, Hsp104A503V can even
display synthetic lethality with strong [PSIC]
variants.150 Thus, the alterations in Hsp104
activity caused by potentiating mutations might
preclude stable maintenance of beneficial
prions states, such as [PSIC], which would in
turn inhibit revelation of cryptic variation and
rapid evolution of new traits in response to
environmental stress.32,33,35,41,45,46 These 2 dif-
ferences between WT Hsp104 and potentiated
Hsp104 in yeast likely explain why the potenti-
ated forms were not fixed during evolution.

Even so, the possibility remains that the
proteomes of other organisms might present
challenges and selection pressures that neces-
sitated more potentiated versions of Hsp104.
Thus, it will be of great interest to compare
the activity of Hsp104 orthologues from
eukaryotic and prokaryotic species with
diverse proteomes. For example, a naturally
occurring variant of Hsp104 could display
enhanced activity able to even more effec-
tively counter the aggregation of human neu-
rodegenerative disease proteins.

Further Engineering of Potentiated
Hsp104 Variants

Using rational design and directed evolution,
it will be important to isolate potentiated
Hsp104 variants that are specific for single pro-
teins (e.g., FUS) to minimize any potential off-
target effects.61,62 It will also be of interest to
isolate conformer-specific potentiated Hsp104
variants. Ideally, Hsp104 variants could be

isolated that antagonize only toxic misfolded
species, for example: Hsp104 variants that
rapidly resolve toxic soluble oligomers but
not amyloid fibrils, or Hsp104 variants that
resolve toxic amyloid strains and not benign
strains. In principle, Hsp104 could be poten-
tiated against any protein or any misfolded
conformer, which might find important appli-
cations not only in therapeutics but also in
the purification of irksome recombinant pro-
teins for valuable basic or pharmaceutical
purposes.

Broader Implications for Engineering
Other Chaperones or Disaggregases

Reactivation of the disease-associated pro-
teins to their non-pathogenic states suggests
that Hsp104 variants and indeed other thera-
peutics that achieve this goal may provide a
highly promising and potentially successful
strategy for halting and reversing the progres-
sion of devastating neurodegenerative diseases.
Potentiation of Hsp104 activity to achieve this
goal required only subtle modifications to the
existing disaggregase.61,63 Indeed, engineering
and directed evolution of the activity of other
molecular chaperones, including GroEL,
Hsp70, ClpX, and Spy, has revealed that minor
changes in primary sequence (often a single
missense mutation) can suffice to drastically
alter substrate specificity or enhance global
chaperone activity.175–179 Indeed, minor altera-
tions in primary sequence in naturally occur-
ring chaperone homologs can also radically
change activity.180 It will be of great interest to
engineer and enhance human molecular chaper-
ones to counter specific protein-misfolding
events related to neurodegenerative disease. In
particular, engineering the human Hsp110,
Hsp70, and Hsp40 disaggregase system,65,73–76

to more effectively disaggregate disease sub-
strates is an important goal. Since small
changes in primary sequence at specific posi-
tions can greatly enhance chaperone activ-
ity61,63,175–180 it appears plausible to isolate
therapeutic small molecules that elicit similar
enhancements in chaperone activity against dis-
ease substrates.181,182
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